
An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 1

An Easy Reference for OLE Automation

Applies to:
ABAP, OLE Word Excel Serdar Simsekler

Summary
An easy reference for OLE automation in ABAP. The document explains basics for dealing with Microsoft
Word and Microsoft Excel documents via ABAP, and includes step-by-step explanations.

Author(s): Serdar Şimşekler
Company: Ankara TURKEY
Created on: 2004

Author Bio

Serdar Şimşekler is an SAP application developer working for Havelsan Inc., Turkey. He has
experience with ABAP program development. He is also studying for an M.A. degree at the department of
philosophy at METU.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 2

Table of Contents

An Easy Reference for OLE Automation ... 1
Applies to: .. 1
Summary.. 1
Author Bio .. 1
Table of Contents .. 2
Purpose.. 2
Prerequisites.. 2
Basics .. 3

Data Definitions.. 3
Creating an OLE Object ... 3
Calling a Method of an Object.. 3
Setting a Property of an Object.. 4
Getting a Property of an Object ... 4
Freeing an Object... 4
NO FLUSH Addition ... 4
Knowing About Methods and Properties of an OLE Object... 5

A General Scheme for Integration with MS Word.. 6
A General Scheme for Integration with MS Excel ... 12
Conclusion ... 23
Disclaimer and Liability Notice... 25

Purpose
Purpose of this tutorial is to provide a step by step guide illustrating usage of OLE automation techniques
within an ABAP program. It is recommended to use SAP DOI (Desktop Office Integration) for office
integration since it standardizes the procedure, handles the integration by a structured and robust service.
However, for some cases, developers need some simpler and more flexible way. This tutorial does not aim
to dive into profound technical facts about the underlying technology. It does not cover all related details
about the topic, either. But, this tutorial may be utilized as a quick reference-manual since it aims to draw a
general scheme.

Prerequisites
Obviously, a basic level ABAP programming skill is required to make use of this tutorial. Knowledge of the
macro language of the application will be of great help and some knowledge about the OLE technology is
recommended.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 3

Basics
Basically, utilizing OLE automation is achieved by creating OLE objects and calling their methods. Within
ABAP, five basic statements are used for OLE automation. So, this first section will deal with those ABAP
statements.

Data Definitions
For each entity of the OLE object, there must be a variable holding handle data for it. These handle variables
should be of the type “ole2_object” which is defined in the type-pool “ole2”. Hence, within your program
you should include “ole2incl” which wraps the pool and then define your handle variables.

*--Include for OLE-enabling definitions

INCLUDE ole2incl .

*--Global variables

*--Variables to hold OLE object handles

DATA gs_word TYPE ole2_object .

.. ..

Creating an OLE Object
To create an OLE object, the ABAP statement “CREATE OBJECT” is used.
 Its syntax is: CREATE OBJECT obj class.
 Here, “obj” is the handle variable for the base object and “class” is the specific identifier for the
corresponding application.
 e.g. CREATE OBJECT gs_word 'WORD.APPLICATION' .

 If the creation is successful the value of “sy-subrc” becomes “0”, otherwise it becomes some other
value (i.e. “1”, “2” or “3” with respect to the error type).

Calling a Method of an Object
After creating an OLE object, it is possible to call its methods to execute its functionality. This is achieved by
using the ABAP statement “CALL METHOD OF”. You can also pass required parameters using this
statement.
 The syntax is: CALL METHOD OF obj m [= f] [EXPORTING p1 = f1 ... pn = fn] .
 Here, “obj” is the object handle variable, “m” is the method name, “f” is the variable where the output
of the method will be replaced and “pn = fn” assignments are used to pass parameters. The
“EXPORTING…” part must be at the end of the statement. For the moment, parameter passing is done by
giving their positions and the corresponding value.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 4

 e.g. CALL METHOD OF gs_word 'Documents' = gs_documents .
 CALL METHOD OF gs_selection 'TypeText' EXPORTING #1 = ip_text .

 Successful method calls makes “sy-subrc” value “0”, and unsuccessful cases make it some other
value.

Setting a Property of an Object
To set a property of an OLE object, the ABAP statement “SET PROPERTY OF” is used.

 The syntax is: SET PROPERTY OF obj p = f .

 Here, “obj” is the object handle variable, “p” is the property name and “f” is the value to be
assigned.

 e.g. SET PROPERTY OF gs_word 'Visible' = 1 .

 Operation result status is indicated at the system variable “sy-subrc”; “0” for successful operations
and another value for erroneous cases.

Getting a Property of an Object
Getting the value of a property of an OLE object is obviously similar to setting it. For this, the ABAP
statement “GET PROPERTY OF” is used.
 The syntax is: GET PROPERTY OF obj p = f .
 Here, “obj” is the object handle variable, “p” is the property name and “f” is the variable to which the
value of the property is assigned.
 e.g. GET PROPERTY OF gs_view 'Type' = gv_viewtype .

 Again, operation result status is indicated at the system variable “sy-subrc”; “0” for successful
operations and another value for erroneous cases.

Freeing an Object
Generally for performance issues, it is required to free the memory allocated for OLE objects. For this, the
ABAP statement “FREE OBJECT” is used.

 The syntax is: FREE OBJECT obj. where “obj” is the object handle variable.

NO FLUSH Addition
Normally, OLE statements are buffered by the ABAP processor and executed at the frontend collectively
before the first statement which is not of OLE context. Using this addition prevents this and postpones the
execution till just before the first non-OLE statement coming after an OLE statement without NO FLUSH
addition.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 5

Knowing About Methods and Properties of an OLE Object
What a developer requires is generally to retrieve information about methods and properties that the OLE
object bestows. Generally, it is a useful way to use the macro debugging of the application to figure out
those. The relevant library of the application will also give useful information about these. What we require to
figure out is the class chain whose instances we will create and make method calls. Recording and
debugging a macro generally provides relevant object hierarchy to be called within the program.
 Here is a simple VB code:

S e l e c t i o n . F o n t . B o l d = T r u e

Upper object

Relevant Object

Value to be set

Attribute

 This line of macro code tells us that to set the attribute bold we must create OLE instances for font
and selection and then set the property bold of font object.
 So let’s switch to ABAP and write relevant code:
Getting instance for font:
 GET PROPERTY OF gs_selection 'Font' = gs_font .

Setting attribute bold
 SET PROPERTY OF gs_font 'Bold' = '1' .

 Here, it is seen that to retrieve lower level instances we use “GET PROPERTY OF” statement. One
will ask how to instantiate selection object which seems to be the topmost object although in the whole
picture it is not. This object is reached following the class hierarchy from the root OLE object created for the
application. This procedure is illustrated in code parts in following sections.

 Here is another VB code line calling a method of an object:

S e l e c t i o n . T y p e T e x t T e x t : = " T h u s S p o k e Z a r a t h u s t r a "

Relevant object

Method Name

Value to pass to
the parameter

Parameter Name

 This VB code is adapted to ABAP as

 CALL METHOD OF gs_selection 'TypeText'

 EXPORTING

 #1 = 'Thus Spoke Zarathustra'.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 6

A General Scheme for Integration with MS Word
Now, it is time to build an application having integration with MS Word and using some of its basic features.
So, let’s define the outline for its task as;

• put a proper title

• write some text

• insert a table

• write a second snippet of text

• insert some identification text at the header

• set measurement unit for the document to ‘CM’

 To be clearer, the code will be written in a non-modular way which will repeat reusable parts. For
your further works, you can modularize all these. For example, all functional codes may be written as
subroutines to be collected in a subroutine pool altogether. Or a function group can be implemented. In fact,
the best way is to develop a class to encapsulate all.
Step 1 Data declarations

REPORT zole_tutor_example_ms_word .

*--Include for OLE-enabling definitions

INCLUDE ole2incl .

*--Global variables

*--Variables to hold OLE object and entity handles

DATA gs_word TYPE ole2_object . "OLE object handle

DATA gs_documents TYPE ole2_object . "Documents

DATA gs_actdoc TYPE ole2_object . "Active document

DATA gs_application TYPE ole2_object . "Application

DATA gs_options TYPE ole2_object . "Application options

DATA gs_actwin TYPE ole2_object . "Active window

DATA gs_actpan TYPE ole2_object . "Active pane

DATA gs_view TYPE ole2_object . "View

DATA gs_selection TYPE ole2_object . "Selection

DATA gs_font TYPE ole2_object . "Font

DATA gs_parformat TYPE ole2_object . "Paragraph format

DATA gs_tables TYPE ole2_object . "Tables

DATA gs_range TYPE ole2_object . "Range handle for various ranges

DATA gs_table TYPE ole2_object . "One table

DATA gs_table_border TYPE ole2_object . "Table border

DATA gs_cell TYPE ole2_object . "One cell of a table

DATA gs_paragraph TYPE ole2_object . "Paragraph

DATA gv_pos(5) TYPE n . "Position information for table

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 7

Code Part B.1 Data declarations
Step 2 Creating the OLE object and get main entities to handle variables.

Code Part B.2 Creating the OLE object

Step 3 Setting the measurement unit to ‘CM’

START-OF-SELECTION .

*--Creating OLE object handle variable

 CREATE OBJECT gs_word 'WORD.APPLICATION' .

 IF sy-subrc NE 0 .

 MESSAGE s000(su) WITH 'Error while creating OLE object!'.

 LEAVE PROGRAM .

 ENDIF .

*--Setting object's visibility property

 SET PROPERTY OF gs_word 'Visible' = '1' .

*--Opening a new document

 GET PROPERTY OF gs_word 'Documents' = gs_documents .

*--Setting the measurement unit

 GET PROPERTY OF gs_application 'Options' = gs_options .

 SET PROPERTY OF gs_options 'MeasurementUnit' = '1' . "CM

Code Part B.3 Setting measurement unit

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 8

Step 4 Some header text
Code Part B.4 Setting header content

*--Getting handle for the selection which is here the character at the

*--cursor position

 GET PROPERTY OF gs_application 'Selection' = gs_selection .

 GET PROPERTY OF gs_selection 'Font' = gs_font .

 GET PROPERTY OF gs_selection 'ParagraphFormat' = gs_parformat .

*--Setting font attributes

 SET PROPERTY OF gs_font 'Name' = 'Arial' .

 SET PROPERTY OF gs_font 'Size' = '10' .

 SET PROPERTY OF gs_font 'Bold' = '0' . "Not bold

 SET PROPERTY OF gs_font 'Italic' = '1' . "Italic

 SET PROPERTY OF gs_font 'Underline' = '0' . "Not underlined

*--Setting paragraph format attribute

 SET PROPERTY OF gs_parformat 'Alignment' = '2' . "Right-justified

 CALL METHOD OF gs_selection 'TypeText'

 EXPORTING

 #1 = 'This is an OLE example!'.

*--Setting the view to the main document again

 SET PROPERTY OF gs_view 'SeekView' = '0' . "Main document view

*--Reseting font attributes for the title

 SET PROPERTY OF gs_font 'Name' = 'Times New Roman' .

 SET PROPERTY OF gs_font 'Size' = '16' .

 SET PROPERTY OF gs_font 'Bold' = '1' . "Bold

 SET PROPERTY OF gs_font 'Italic' = '0' . "Not Italic

 SET PROPERTY OF gs_font 'Underline' = '0' . "Not underlined

*--Setting paragraph format attribute

 SET PROPERTY OF gs_parformat 'Alignment' = '1' . "Centered

 CALL METHOD OF gs_selection 'TypeText'

 EXPORTING

 #1 = text-000.

*--Advancing cursor to the new line

 CALL METHOD OF gs_selection 'TypeParagraph' .

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 9

Step 5 Writing the title
Code Part B.5 Writing the title

Step 6 Writing some text

*--Reseting font attributes for ordinary text

 SET PROPERTY OF gs_font 'Name' = 'Times New Roman' .

 SET PROPERTY OF gs_font 'Size' = '12' .

 SET PROPERTY OF gs_font 'Bold' = '0' . "Not bold

 SET PROPERTY OF gs_font 'Italic' = '0' . "Not Italic

 SET PROPERTY OF gs_font 'Underline' = '0' . "Not underlined

*--Setting paragraph format attribute

 SET PROPERTY OF gs_parformat 'Alignment' = '3' . "Justified

 CALL METHOD OF gs_selection 'TypeText'

 EXPORTING

 #1 = text-001.

*--Skip some lines

 DO 4 TIMES .

 CALL METHOD OF gs_selection 'TypeParagraph' .

 ENDDO .

Code Part B.6 Writing some text

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 10

Step 7 Inserting a table and filling some of its cells

*--Getting entity handles for the entities on the way

 GET PROPERTY OF gs_actdoc 'Tables' = gs_tables .

 GET PROPERTY OF gs_selection 'Range' = gs_range .

*--Adding a table with 3 rows and 2 columns

 CALL METHOD OF gs_tables 'Add' = gs_table

 EXPORTING

 #1 = gs_range " Handle for range entity

 #2 = '3' "Number of rows

 #3 = '2'. "Number of columns

*--Setting border attribute for the table

 GET PROPERTY OF gs_table 'Borders' = gs_table_border .

 SET PROPERTY OF gs_table_border 'Enable' = '1' . "With border

*--Filling the table with dummy data

*--Reseting font attributes for table content

 SET PROPERTY OF gs_font 'Name' = 'Garamond' .

 SET PROPERTY OF gs_font 'Size' = '11' .

 SET PROPERTY OF gs_font 'Bold' = '0' . "Not bold

 SET PROPERTY OF gs_font 'Italic' = '0' . "Not Italic

 SET PROPERTY OF gs_font 'Underline' = '0' . "Not underlined

*--Getting cell coordinates

 CALL METHOD OF gs_table 'Cell' = gs_cell

 EXPORTING

 #1 = '1' "first row

 #2 = '1'. "first column

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 11

Code Part B.7 Some table work

Step 8 Adding some other text and indent its paragraph
Code Part B.8 Writing some indented text

Step 9 Freeing object handle variable to deallocate memory

Code Part B.9 Freeing object handle variable

*--Getting the range handle to write the text

 GET PROPERTY OF gs_cell 'Range' = gs_range .

*--Filling the cell

 SET PROPERTY OF gs_range 'Text' = 'OLE' .

*--Getting cell coordinates

 CALL METHOD OF gs_table 'Cell' = gs_cell

 EXPORTING

 #1 = '3' "third row

 #2 = '2'. "second column

*--Reseting font attributes for ordinary text

 SET PROPERTY OF gs_font 'Name' = 'Times New Roman' .

 SET PROPERTY OF gs_font 'Size' = '12' .

 SET PROPERTY OF gs_font 'Bold' = '0' . "Not bold

 SET PROPERTY OF gs_font 'Italic' = '0' . "Not Italic

 SET PROPERTY OF gs_font 'Underline' = '0' . "Not underlined

*--Setting paragraph format attribute

 SET PROPERTY OF gs_parformat 'Alignment' = '3' . "Justified

*--Indent the paragraph once

 GET PROPERTY OF gs_selection 'Paragraphs' = gs_paragraph .

 CALL METHOD OF gs_paragraph 'Indent' .

 CALL METHOD OF gs_selection 'TypeText'

 EXPORTING

 #1 = text-002.

FREE OBJECT gs_word .

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 12

Result:

A General Scheme for Integration with MS Excel
Secondly, let’s build an application having integration with MS Excel and using some of its basic features.
So, let’s define the outline for its task as;

1. User inputs the number of worksheets
2. For each sheet, creates some data to be also the source for a chart
3. Makes some cell formatting
4. Draws the chart and relocates it to the proper place on the sheet

 To be clearer again, the code will be written in a non-modular way which will repeat reusable parts.
For your further works, you can modularize all these. For example, all functional codes may be written as
subroutines to be collected in a subroutine pool altogether. Or a function group can be implemented. In fact,
the best way is to develop a class to encapsulate all. The order of method calls is important, so do not
change their order.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 13

Step 1 Data declarations

Code Part C.1 Data declarations

REPORT zole_tutor_example_ms_excel .

INCLUDE ole2incl .

DATA: gs_excel TYPE ole2_object ,

 gs_wbooklist TYPE ole2_object ,

 gs_application TYPE ole2_object ,

 gs_wbook TYPE ole2_object ,

 gs_activesheet TYPE ole2_object ,

 gs_sheets TYPE ole2_object ,

 gs_newsheet TYPE ole2_object ,

 gs_cell1 TYPE ole2_object ,

 gs_cell2 TYPE ole2_object ,

 gs_cells TYPE ole2_object ,

 gs_range TYPE ole2_object ,

 gs_font TYPE ole2_object ,

 gs_interior TYPE ole2_object ,

 gs_columns TYPE ole2_object ,

 gs_charts TYPE ole2_object ,

 gs_chart TYPE ole2_object ,

 gs_charttitle TYPE ole2_object ,

 gs_charttitlechar TYPE ole2_object ,

 gs_chartobjects TYPE ole2_object .

DATA gv_sheet_name(20) TYPE c .

DATA gv_outer_index LIKE sy-index .

DATA gv_intex(2) TYPE c .

DATA gv_line_cntr TYPE i . "line counter

DATA gv_linno TYPE i . "line number

DATA gv_colno TYPE i . "column number

DATA gv_value TYPE i . "data

PARAMETERS: p_sheets TYPE i .

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 14

Step 2 Initiate the do-loop and OLE automation base objects

Code Part C.2 Looping and initializing, adding new worksheets

START-OF-SELECTION .

 DO p_sheets TIMES .

*--Forming sheet name

 gv_intex = sy-index .

 gv_outer_index = sy-index .

 CONCATENATE 'Excel Sheet #' gv_intex INTO gv_sheet_name .

*--For the first loop, Excel is initiated and one new sheet is added

 IF sy-index = 1 .

 CREATE OBJECT gs_excel 'EXCEL.APPLICATION' .

 SET PROPERTY OF gs_excel 'Visible' = 1 .

 GET PROPERTY OF gs_excel 'Workbooks' = gs_wbooklist .

 GET PROPERTY OF gs_wbooklist 'Application' = gs_application .

 SET PROPERTY OF gs_application 'SheetsInNewWorkbook' = 1 .

 CALL METHOD OF gs_wbooklist 'Add' = gs_wbook .

 GET PROPERTY OF gs_application 'ActiveSheet' = gs_activesheet .

 SET PROPERTY OF gs_activesheet 'Name' = gv_sheet_name .

*--For the rest of loops, other sheets are added

 ELSE .

 GET PROPERTY OF gs_wbook 'Sheets' = gs_sheets .

 CALL METHOD OF gs_sheets 'Add' = gs_newsheet .

 SET PROPERTY OF gs_newsheet 'Name' = gv_sheet_name .

 ENDIF .

 gv_line_cntr = 1 . "line counter

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 15

Step3 Write the title and format it

*--Title

*--Selecting cell area to be merged.

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = 1

 #2 = 1.

 CALL METHOD OF gs_excel 'Cells' = gs_cell2

 EXPORTING

 #1 = 1

 #2 = 4.

 CALL METHOD OF gs_excel 'Range' = gs_cells

 EXPORTING

 #1 = gs_cell1

 #2 = gs_cell2.

 CALL METHOD OF gs_cells 'Select' .

*--Merging

 CALL METHOD OF gs_cells 'Merge' .

*--Setting title data

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_line_cntr

 #2 = 1.

 SET PROPERTY OF gs_cell1 'Value' = 'TITLE' .

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 16

Code Part C.3 Writing and formatting the title

*--Formatting the title

 GET PROPERTY OF gs_cell1 'Font' = gs_font .

 SET PROPERTY OF gs_font 'Underline' = 2 .

 SET PROPERTY OF gs_font 'Bold' = 1 .

 SET PROPERTY OF gs_cell1 'HorizontalAlignment' = -4108 .

 GET PROPERTY OF gs_cell1 'Interior' = gs_interior .

 SET PROPERTY OF gs_interior 'ColorIndex' = 15 .

 SET PROPERTY OF gs_interior 'Pattern' = -4124 .

 SET PROPERTY OF gs_interior 'PatternColorIndex' = -4105 .

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 17

Step 4 Write some additional data for the title area and format them

 gv_line_cntr = gv_line_cntr + 1 .

*--Writing some additional data for the title

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_line_cntr

 #2 = 1.

 SET PROPERTY OF gs_cell1 'Value' = 'Sheet No' .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_line_cntr

 #2 = 5.

 SET PROPERTY OF gs_cell1 'Value' = ':' .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_line_cntr

 #2 = 6.

 SET PROPERTY OF gs_cell1 'Value' = gv_intex .

*--Formatting the area of additional data 1

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = 1

 #2 = 1.

 CALL METHOD OF gs_excel 'Cells' = gs_cell2

 EXPORTING

 #1 = gv_line_cntr

 #2 = 5.

 CALL METHOD OF gs_excel 'Range' = gs_cells

 EXPORTING

 #1 = gs_cell1

 #2 = gs_cell2.

 CALL METHOD OF gs_cells 'Select' .

 GET PROPERTY OF gs_cells 'Font' = gs_font .

 SET PROPERTY OF gs_font 'Bold' = 1 .

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 18

Code Part C.4 Some additional writing to the title area, formatting and bordering around the title area

*--Formatting the area of additional data 2

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = 1

 #2 = 5.

 CALL METHOD OF gs_excel 'Cells' = gs_cell2

 EXPORTING

 #1 = gv_line_cntr

 #2 = 5.

 CALL METHOD OF gs_excel 'Range' = gs_cells

 EXPORTING

 #1 = gs_cell1

 #2 = gs_cell2.

 CALL METHOD OF gs_cells 'Select' .

 GET PROPERTY OF gs_cells 'Columns' = gs_columns .

 CALL METHOD OF gs_columns 'AutoFit' .

*--Bordering title data area

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = 1

 #2 = 1.

 CALL METHOD OF gs_excel 'Cells' = gs_cell2

 EXPORTING

 #1 = gv_line_cntr

 #2 = 6.

 CALL METHOD OF gs_excel 'Range' = gs_cells

 EXPORTING

 #1 = gs_cell1

 #2 = gs_cell2.

 CALL METHOD OF gs_cells 'Select' .

 CALL METHOD OF gs_cells 'BorderAround'

 EXPORTING

 #1 = 1 "continuous line

 #2 = 4. "thick

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 19

Step 5 Put axis labels to the data area

Code Part C.5 Axis Labels

Step 6 Generate some data

*--Putting axis labels

 gv_colno = 2 .

 gv_line_cntr = gv_line_cntr + 5 .

 gv_linno = gv_line_cntr - 1 .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_linno

 #2 = 1.

 SET PROPERTY OF gs_cell1 'Value' = 'X' .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_line_cntr

 #2 = 1.

 SET PROPERTY OF gs_cell1 'Value' = 'Y' .

*--Generating some data

 DO 3 TIMES .

 gv_value = gv_outer_index * sy-index * 10 .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_linno

 #2 = gv_colno.

 SET PROPERTY OF gs_cell1 'Value' = sy-index .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv line cntr

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 20

Code Part C.6 Generating Data

Step 7 Set source data area for the chart

Code Part C.7 Setting source data area for the chart

Step8 Draw the chart

Code Part C.8 Draw the chart

*--Source data area

 gv_colno = gv_colno - 1 .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_linno

 #2 = 1.

 CALL METHOD OF gs_excel 'Cells' = gs_cell2

 EXPORTING

 #1 = gv_line_cntr

 #2 = gv_colno.

 CALL METHOD OF gs_excel 'Range' = gs_cells

 EXPORTING

 #1 = gs_cell1

 #2 = gs_cell2.

 CALL METHOD OF gs_cells 'Select' .

 GET PROPERTY OF gs_application 'Charts' = gs_charts .

 CALL METHOD OF gs_charts 'Add' = gs_chart .

 CALL METHOD OF gs_chart 'Activate' .

 SET PROPERTY OF gs_chart 'ChartType' = '51' . "Vertical bar graph

 CALL METHOD OF gs_chart 'SetSourceData'

 EXPORTING

 #1 = gs_cells

 #2 = 1.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 21

Step 9 Locate the chart onto the current worksheet

Code Part C.9 Locating the chart onto the current worksheet

Step 10 Reposition the chart to a proper place and finish the do-loop

*--Reposition the chart on the worksheet (cut&paste)

 CALL METHOD OF gs_activesheet 'ChartObjects' = gs_chartobjects .

 CALL METHOD OF gs_chartobjects 'Select' .

 CALL METHOD OF gs_chartobjects 'Cut' .

*--Select new area

 gv_line_cntr = gv_line_cntr + 2 .

 CALL METHOD OF gs_excel 'Cells' = gs_cell1

 EXPORTING

 #1 = gv_line_cntr

 #2 = 1.

 CALL METHOD OF gs_excel 'Cells' = gs_cell2

 EXPORTING

 #1 = gv_line_cntr

 #2 = 1.

 CALL METHOD OF gs_excel 'Range' = gs_cells

 EXPORTING

 #1 = gs_cell1

 #2 = gs_cell2.

 CALL METHOD OF gs_cells 'Select' .

 CALL METHOD OF gs_activesheet 'Paste' .

 ENDDO .

*--Locate the chart onto the current worksheet

*--Activate current sheet

 CALL METHOD OF gs_excel 'WorkSheets' = gs_activesheet

 EXPORTING

 #1 = gv_sheet_name.

 CALL METHOD OF gs_activesheet 'Activate' .

 CALL METHOD OF gs_chart 'Location'

 EXPORTING

 #1 = 2

 #2 = gv_sheet_name.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 22

Code Part C.10 Repositioning the chart to a proper place and end of the do-loop counting sheet number

Step 11 Free OLE objects to deallocate memory

Code Part C.11 Deallocating the memory

*--Deallocating memory

 FREE: gs_excel, gs_wbooklist, gs_application, gs_wbook,

 gs_activesheet,gs_sheets, gs_newsheet, gs_cell1,

 gs_cell2, gs_cells, gs_range, gs_font, gs_interior,

 gs_columns, gs_charts, gs_chart, gs_charttitle,

 gs_charttitlechar, gs_chartobjects .

Result:

 The result of the above program will be a number of worksheets having a title area, some generated
data and a chart related to those data.

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 23

Conclusion
Now, it is possible to write programs providing integration with MS Office applications through simple OLE
automation techniques. The way how to interpret macro codes to ABAP is explained so that one can find and
implement required functionality using means of the automated application. As stated before, for
requirements that can be fulfilled by DOI, prefer using it. Rainer Ehre defines SAP Desktop Office Integration
(SAP DOI) as “a technology that allows programmers to integrate desktop applications without needing

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 24

extensive knowledge of the application’s macro language, or even having to be acquainted with the
application to any greater depth than the average end-user”. For more information on SAP DOI, you can
search for Ehre’s published documents. You can also inspect demo programs for SAP DOI at the
development class SOFFICEINTEGRATION. In an R/3 system (after Release 4.0), you can reach related
help documents following: Help � R/3 Library, BC – Basis � Component Integration � BC – Desktop Office
Integration.
 Another component to be mentioned here is SAP BDS (Business Document Service) which provides
utilities for important document services and has its own user interface: BDN – Business Document
Navigator.
 Consequently, it is highly recommended to make use of SAP DOI for office integration. For further
questions on OLE automation you can refer to the SAP Developer Network ABAP Programming Forum at
http://www.sdn.sap.com.

http://www.sdn.sap.com/

An Easy Reference for OLE Automation

SAP DEVELOPER NETWORK | sdn.sap.com BUSINESS PROCESS EXPERT COMMUNITY | bpx.sap.com

© 2007 SAP AG 25

Disclaimer and Liability Notice
This document may discuss sample coding or other information that does not include SAP official interfaces
and therefore is not supported by SAP. Changes made based on this information are not supported and can
be overwritten during an upgrade.
SAP will not be held liable for any damages caused by using or misusing the information, code or methods
suggested in this document, and anyone using these methods does so at his/her own risk.
SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of
this technical article or code sample, including any liability resulting from incompatibility between the content
within this document and the materials and services offered by SAP. You agree that you will not hold, or
seek to hold, SAP responsible or liable with respect to the content of this document.

	Applies to:
	Summary
	Author Bio
	 Table of Contents
	Purpose
	Prerequisites
	Basics
	Data Definitions
	Creating an OLE Object
	Calling a Method of an Object
	Setting a Property of an Object
	Getting a Property of an Object
	Freeing an Object
	NO FLUSH Addition
	Knowing About Methods and Properties of an OLE Object

	A General Scheme for Integration with MS Word
	A General Scheme for Integration with MS Excel
	Conclusion
	 Disclaimer and Liability Notice

